Fonctions de déformation image produit tensoriel généralisées Generalized Tensor-Product Warps
نویسندگان
چکیده
The inter-image flow field is often modeled by some parametric warp function. Nearly all warps in the literature are based on a linear combination of control points, as for example the Free-Form Deformation (FFD) warp which uses the tensor-product of B-splines. It has been recently shown that the FFD warp models the affine projection of a deforming surface. This is also the case for all tensorproduct warps and this limits the extent of deformations that can be modeled by these warps. We present the Generalized Tensor-Product (GTP) warps. These model the affine and perspective projection of a rigid and a deforming surface in a generic manner. They include the FFD warp and the recent NURBS warp as special cases. We also propose a new kind of warp that is simpler than the perspective warp using an affine function to model the surface’s depth. Experimental results are reported for simulated and real data, showing how our GTP warps improve on existing ones.
منابع مشابه
The Smash Product of Symmetric Functions
We construct a new operation among representations of the symmetric group that interpolates between the classical internal and external products, which are defined in terms of tensor product and induction of representations. Following Malvenuto and Reutenauer, we pass from symmetric functions to non-commutative symmetric functions and from there to the algebra of permutations in order to relate...
متن کاملConcerning the semistability of tensor products in Arakelov geometry
— We study the semistability of the tensor product of hermitian vector bundles by using the ε-tensor product and the geometric (semi)stability of vector subspaces in the tensor product of two vector spaces. Notably, for any number field K and any hermitian vector bundles E and F over SpecOK , we show that the maximal slopes of E, F , and E ⊗ F satisfy the following inequality : μ̂max(E ⊗ F ) 6 μ̂...
متن کاملExtensions Absolument Modulaires
The modulars extensions are for the purely inseparables extensions what are the Galoisian extensions for the separables extensions. However if L is an intermediate field of K/k, we haven’t K/k modular =⇒ K/L modular . Such extensions are described in [5], in the case, K is a tensor product of simples extensions. We gives here a description in the general case. Résumé. Les extensions modulaires ...
متن کاملColored Tutte polynomials and composite knots
Surveying the results of three recent papers and some currently ongoing research, we show how a generalization of Brylawski’s tensor product formula to colored graphs may be used to compute the Jones polynomial of some fairly complicated knots and, in the future, even virtual knots. Résumé. En faisant une revue de trois articles récents et de la recherche en cours, nous montrons comment une gén...
متن کاملSur les algèbres obtenues par produit tensoriel. Application aux algèbres de Lie de courant
Soit P une opérade quadratique. On détermine une opérade associée P̃ ayant la propriété suivante, pour toute P-algèbre A et toute P̃-algèbre B alors A⊗B est une Palgèbre pour le produit classique. On s’intéresse ensuite au cas particulier des algèbres de Lie de courant en étudiant plus précisément la rigidité et les déformations. 1 Produit tensoriel de P-algèbres et de P -algèbres Soit P une opér...
متن کامل